Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast.

Identifieur interne : 001A45 ( Main/Exploration ); précédent : 001A44; suivant : 001A46

Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast.

Auteurs : Y. Jiang [États-Unis] ; J R Broach

Source :

RBID : pubmed:10329624

Descripteurs français

English descriptors

Abstract

Tor proteins, homologous to DNA-dependent protein kinases, participate in a signal transduction pathway in yeast that regulates protein synthesis and cell wall expansion in response to nutrient availability. The anti-inflammatory drug rapamycin inhibits yeast cell growth by inhibiting Tor protein signaling. This leads to diminished association of a protein, Tap42, with two different protein phosphatase catalytic subunits; one encoded redundantly by PPH21 and PPH22, and one encoded by SIT4. We show that inactivation of either Cdc55 or Tpd3, which regulate Pph21/22 activity, results in rapamycin resistance and that this resistance correlates with an increased association of Tap42 with Pph21/22. Furthermore, we show Tor-dependent phosphorylation of Tap42 both in vivo and in vitro and that this phosphorylation is rapamycin sensitive. Inactivation of Cdc55 or Tpd3 enhances in vivo phosphorylation of Tap42. We conclude that Tor phosphorylates Tap42 and that phosphorylated Tap42 effectively competes with Cdc55/Tpd3 for binding to the phosphatase 2A catalytic subunit. Furthermore, Cdc55 and Tpd3 promote dephosphorylation of Tap42. Thus, Tor stimulates growth-promoting association of Tap42 with Pph21/22 and Sit4, while Cdc55 and Tpd3 inhibit this association both by direct competition and by dephosphorylation of Tap42. These results establish Tap42 as a target of Tor and add further refinement to the Tor signaling pathway.

DOI: 10.1093/emboj/18.10.2782
PubMed: 10329624
PubMed Central: PMC1171359


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast.</title>
<author>
<name sortKey="Jiang, Y" sort="Jiang, Y" uniqKey="Jiang Y" first="Y" last="Jiang">Y. Jiang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, Princeton University, Princeton, NJ 08544</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Broach, J R" sort="Broach, J R" uniqKey="Broach J" first="J R" last="Broach">J R Broach</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10329624</idno>
<idno type="pmid">10329624</idno>
<idno type="doi">10.1093/emboj/18.10.2782</idno>
<idno type="pmc">PMC1171359</idno>
<idno type="wicri:Area/Main/Corpus">001A57</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A57</idno>
<idno type="wicri:Area/Main/Curation">001A57</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A57</idno>
<idno type="wicri:Area/Main/Exploration">001A57</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast.</title>
<author>
<name sortKey="Jiang, Y" sort="Jiang, Y" uniqKey="Jiang Y" first="Y" last="Jiang">Y. Jiang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, Princeton University, Princeton, NJ 08544</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Broach, J R" sort="Broach, J R" uniqKey="Broach J" first="J R" last="Broach">J R Broach</name>
</author>
</analytic>
<series>
<title level="j">The EMBO journal</title>
<idno type="ISSN">0261-4189</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (MeSH)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>Drosophila Proteins (MeSH)</term>
<term>Drug Resistance (MeSH)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphoprotein Phosphatases (genetics)</term>
<term>Phosphoprotein Phosphatases (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Phosphatase 2 (MeSH)</term>
<term>RNA-Binding Proteins (metabolism)</term>
<term>Receptor Protein-Tyrosine Kinases (genetics)</term>
<term>Receptor Protein-Tyrosine Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Liaison aux protéines (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphoprotein Phosphatases (génétique)</term>
<term>Phosphoprotein Phosphatases (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Phosphatase 2 (MeSH)</term>
<term>Protéines adaptatrices de la transduction du signal (MeSH)</term>
<term>Protéines de Drosophila (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (MeSH)</term>
<term>Protéines de liaison à l'ARN (métabolisme)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Récepteurs à activité tyrosine kinase (génétique)</term>
<term>Récepteurs à activité tyrosine kinase (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Résistance aux substances (MeSH)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphoprotein Phosphatases</term>
<term>Receptor Protein-Tyrosine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Fungal Proteins</term>
<term>Phosphoprotein Phosphatases</term>
<term>RNA-Binding Proteins</term>
<term>Receptor Protein-Tyrosine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Drosophila Proteins</term>
<term>Protein Phosphatase 2</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phosphoprotein Phosphatases</term>
<term>Récepteurs à activité tyrosine kinase</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Phosphoprotein Phosphatases</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines du cycle cellulaire</term>
<term>Protéines fongiques</term>
<term>Récepteurs à activité tyrosine kinase</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Resistance</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Protein Binding</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Liaison aux protéines</term>
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Protein Phosphatase 2</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de Drosophila</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Résistance aux substances</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tor proteins, homologous to DNA-dependent protein kinases, participate in a signal transduction pathway in yeast that regulates protein synthesis and cell wall expansion in response to nutrient availability. The anti-inflammatory drug rapamycin inhibits yeast cell growth by inhibiting Tor protein signaling. This leads to diminished association of a protein, Tap42, with two different protein phosphatase catalytic subunits; one encoded redundantly by PPH21 and PPH22, and one encoded by SIT4. We show that inactivation of either Cdc55 or Tpd3, which regulate Pph21/22 activity, results in rapamycin resistance and that this resistance correlates with an increased association of Tap42 with Pph21/22. Furthermore, we show Tor-dependent phosphorylation of Tap42 both in vivo and in vitro and that this phosphorylation is rapamycin sensitive. Inactivation of Cdc55 or Tpd3 enhances in vivo phosphorylation of Tap42. We conclude that Tor phosphorylates Tap42 and that phosphorylated Tap42 effectively competes with Cdc55/Tpd3 for binding to the phosphatase 2A catalytic subunit. Furthermore, Cdc55 and Tpd3 promote dephosphorylation of Tap42. Thus, Tor stimulates growth-promoting association of Tap42 with Pph21/22 and Sit4, while Cdc55 and Tpd3 inhibit this association both by direct competition and by dephosphorylation of Tap42. These results establish Tap42 as a target of Tor and add further refinement to the Tor signaling pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10329624</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0261-4189</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>18</Volume>
<Issue>10</Issue>
<PubDate>
<Year>1999</Year>
<Month>May</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>The EMBO journal</Title>
<ISOAbbreviation>EMBO J</ISOAbbreviation>
</Journal>
<ArticleTitle>Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>2782-92</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Tor proteins, homologous to DNA-dependent protein kinases, participate in a signal transduction pathway in yeast that regulates protein synthesis and cell wall expansion in response to nutrient availability. The anti-inflammatory drug rapamycin inhibits yeast cell growth by inhibiting Tor protein signaling. This leads to diminished association of a protein, Tap42, with two different protein phosphatase catalytic subunits; one encoded redundantly by PPH21 and PPH22, and one encoded by SIT4. We show that inactivation of either Cdc55 or Tpd3, which regulate Pph21/22 activity, results in rapamycin resistance and that this resistance correlates with an increased association of Tap42 with Pph21/22. Furthermore, we show Tor-dependent phosphorylation of Tap42 both in vivo and in vitro and that this phosphorylation is rapamycin sensitive. Inactivation of Cdc55 or Tpd3 enhances in vivo phosphorylation of Tap42. We conclude that Tor phosphorylates Tap42 and that phosphorylated Tap42 effectively competes with Cdc55/Tpd3 for binding to the phosphatase 2A catalytic subunit. Furthermore, Cdc55 and Tpd3 promote dephosphorylation of Tap42. Thus, Tor stimulates growth-promoting association of Tap42 with Pph21/22 and Sit4, while Cdc55 and Tpd3 inhibit this association both by direct competition and by dephosphorylation of Tap42. These results establish Tap42 as a target of Tor and add further refinement to the Tor signaling pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Broach</LastName>
<ForeName>J R</ForeName>
<Initials>JR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA41086</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>EMBO J</MedlineTA>
<NlmUniqueID>8208664</NlmUniqueID>
<ISSNLinking>0261-4189</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C071246">CDC55 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029721">Drosophila Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C082119">NGR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C100984">TAP42 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="D020794">Receptor Protein-Tyrosine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="C080148">tor protein, Drosophila</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D010749">Phosphoprotein Phosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D054648">Protein Phosphatase 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029721" MajorTopicYN="Y">Drosophila Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004351" MajorTopicYN="N">Drug Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010749" MajorTopicYN="N">Phosphoprotein Phosphatases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054648" MajorTopicYN="N">Protein Phosphatase 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020794" MajorTopicYN="N">Receptor Protein-Tyrosine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="Y">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>5</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
<ArticleId IdType="doi">10.1093/emboj/18.10.2782</ArticleId>
<ArticleId IdType="pmc">PMC1171359</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1994 Dec 23;269(51):32027-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7528205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Oct 5;377(6548):441-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7566123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Dec 1;14(23):5892-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Feb 1;15(3):658-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8599949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Mar 22;84(6):889-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8601312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4076-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8633019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Jun;16(6):2744-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8649382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 1996 Feb;24(1):234-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8674674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1996 May;21(5):181-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8871403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Feb 21;88(4):531-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9038344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Jun;17(6):3242-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9154823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jul 4;277(5322):99-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9204908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Jun 16;16(12):3693-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9218810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1973 Jun 10;248(11):3860-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4575197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 Dec;9(13):4339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2176150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1990 Jul;222(2-3):393-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2125693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1705713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Apr;11(4):2133-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1848673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Oct;11(10):4876-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1656215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Nov;11(11):5767-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1656238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Nov;12(11):4946-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1328868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1992 Dec;6(12A):2417-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1334024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10624-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9380685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 19;272(51):32547-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1997 Dec;9(6):782-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1432-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9465032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 5;273(23):14484-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9603962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7772-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Jun 29;247(3):827-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9647778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Sep;18(9):5229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9710607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Nov 5;8(22):1211-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Nov 19;8(23):1259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9822578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Jul 14;82(1):121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7606777</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Broach, J R" sort="Broach, J R" uniqKey="Broach J" first="J R" last="Broach">J R Broach</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Jiang, Y" sort="Jiang, Y" uniqKey="Jiang Y" first="Y" last="Jiang">Y. Jiang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A45 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A45 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:10329624
   |texte=   Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:10329624" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020